
Quetzal Documentation
Release 0.6.0-dev

David Ojeda

Mar 24, 2020

GENERAL

1 Features 3
1.1 Introduction . 4
1.2 Design . 4
1.3 License . 9
1.4 Quickstart . 9
1.5 Use cases . 10
1.6 Quickstart . 10
1.7 Cloud storage . 11
1.8 Structure . 11
1.9 Code organization . 11
1.10 Development use cases . 12
1.11 Testing . 13
1.12 Deployment . 13
1.13 Development . 21

2 Indices and tables 55

Python Module Index 57

Index 59

i

ii

Quetzal Documentation, Release 0.6.0-dev

Quetzal (short for Quetzalcóatl, the feathered snake), a RESTful API designed to store data files and manage their
associated metadata.

Quetzal is an application that uses Cloud storage providers and non-structured databases to help researchers organize
their data and metadata files. Its main feature is to provide a remote, virtually infinite, storage location for researchers’
data, while providing an API to encapsulate data/metadata operations. In other words, researchers and teams can work
with large amounts of data that would be too large for local analyses, using Quetzal to simplify the complexity of
Cloud resource management.

Quetzal’s mid-term roadmap is to integrate with large public physiological signal databases like PhysioNet, MIPDB,
TUH, among others. Tha main objective is to provide researchers and data scientists a unique bank of file datasets
with a unified API to access the data and to encapsulate the heteronegeity of these datasets.

GENERAL 1

https://physionet.org/
http://fcon_1000.projects.nitrc.org/indi/cmi_eeg/
https://www.isip.piconepress.com/projects/tuh_eeg/html/overview.shtml

Quetzal Documentation, Release 0.6.0-dev

2 GENERAL

CHAPTER

ONE

FEATURES

There are two scenarios where Quetzal was designed to help:

• Imagine you want to apply a data processing pipeline to a large dataset. There are several solutions on how to
execute and parallelize your code, but where is the data? Moreover, imagine that you want to do a transverse
study: How do you manage the different sources? How to download them?

Quetzal provides a single data source with a simple API that will let you define easily the scope of your study
and, with a brief Python code that uses Quetzal client, you will be able to download your dataset.

• Let’s say that you are preparing a new study implying some data collection protocol. You could define a proce-
dure where the data operators or technicians take care to copy the data files in a disk, Google Drive or Dropbox,
along with the notes associated with each session, like subject study identifier, date, age, temperature, etc. Do-
ing this manually would be error-prone. Moreover, the structure of these notes (i.e. the metadata) may evolve
quickly, so you either save them as manual notes, text files, or some database that gives you the flexibility to
quickly adapt its structre.

Using the Quetzal API, you automate the upload and safe storage of the study files, associate the metadata of
these files while having the liberty to set and modify the metadata structure as you see fit.

In brief, Quetzal offers the following main features:

• Storage of data files, based on cloud storage providers, which benefits from all of the features from the provider,
such as virtually infinite storage size.

• Unstructured metadata associated to each file*. Quetzal does not force the user to organize your metadata in
a particular way, it lets the user keep whatever structure they prefer.

• Structured metadata views for metadata exploration or dataset definition. By leveraging Postgres SQL, un-
structured metadata can be queried as JSON objects, letting the user express what subset of the data they want
to use.

• Metadata versioning. Changes on metadata are versioned, which is particularly useful to ensure that a dataset
are reproducible.

• Endpoints and operations defined using the OpenAPI v3 specification.

The rest of this documentation is divided in three main sections, a General explanation of Quetzal concepts, design
decisions and how it works. For Quetzal users, that is, those who want to consume the API to explore or download from
the public datasets, the User documentation section shows the most common use cases and examples. For developers
or users that want to have their own Quetzal server, the Developer documentation includes all the details on creating a
development environment, and procedures on how to deploy a server.

3

https://github.com/quetz-al/quetzal-client
https://github.com/OAI/OpenAPI-Specification

Quetzal Documentation, Release 0.6.0-dev

1.1 Introduction

1.1.1 Motivation

1.1.2 Main features

1.1.3 Alternatives

1.2 Design

This document explains the concepts and design decisions followed in Quetzal.

1.2.1 Concepts

File

In Quetzal, the basic unit of data is the file. A file (sometimes referred as data file) is not a Quetzal-specific term; it
is exactly what a regular file is: a collection of bytes stored at a particular location. The specific location where a file
is stored is handled by Quetzal and it depends on what storage backend was configured for the application.

When Quetzal stores a file, which is uploaded by a user through the file upload endpoint, it saves it in a storage bucket
with a unique URL, while keeping track of a minimal set of metadata such as its URL, size, checksum, original path
and filename (see the Base family for more details).

Metadata

Metadata are key-value pairs associated to each file uploaded to Quetzal. They are is intended to represent all
that extra information not directly represented in the contents of file. This includes all that useful information that
a researcher may need to provide context or annotations to the data. For example, the subject identifier, recording
hardware used, software version number of the acquisition software, etc. Additionally, any information that may be
useful to query and filter the data is also a good candidate to be saved as metadata. For example, sampling frequency,
whether the file contains an error or not, and even references to other files.

To illustrate what metadata is, let us imagine that you have a dataset of three files, with the following associated
information:

filename subject session date type
study_foo/subject_1/session_1/eeg/signals.xdf S001 1 02/03/2019 EEG
study_foo/subject_1/session_2/eeg/signals.xdf S001 2 03/03/2019 EEG
study_foo/subject_2/ecg/cardiac.edf S002 23/01/2019 Holter

In this case, the first file has four metadata entries: the subject identifier, its session number, the date and a categorical
value indicating that the data file contains EEG signals. We can even say that the filename is a metadata as well,
because it has a key (filename) and a value (study/subject_x/. . .).

The other files have similar metadata, but note that the third file does not have a session number. This is one of the
reasons Quetzal works with unstructured metadata; you are not obligated to follow the same metadata structure for all
files.

4 Chapter 1. Features

https://api.quetz.al/redoc#operation/workspace_file.create

Quetzal Documentation, Release 0.6.0-dev

Family

Once you start considering metadata, and how it is just a key-value pair associated to a file, you may think of a myriad
of metadata to associate to your files. How do you organize these key-value pairs? Families provide a semantic
organization of your metadata.

In Quetzal, a family is a set of metadata keys, defined for some common semantic or organizational purpose.

In the table presented above, it would make sense to keep the subject, session and date metadata grouped together,
since this information is related to the study protocol. The data type, on the other hand, could be organized elsewhere,
just for the purpose of this example, in a family that groups all signal-related information. Moreover, the filename can
be related to a base family, which is information that Quetzal needs for bookkeeping.

Here is an updated table with the metadata and their families:

base family study family signal fam-
ily

filename sub-
ject

ses-
sion

date type

study_foo/subject_1/session_1/eeg/signals.
xdf

S001 1 02/03/2019 EEG

study_foo/subject_1/session_2/eeg/signals.
xdf

S001 2 03/03/2019 EEG

study_foo/subject_2/ecg/cardiac.edf S002 23/01/2019 Holter

A row on this table, corresponding to the metadata of one file, can be represented as a JSON object as shown below.
This representation is how the Quetzal API responds to a request for the metadata of a file.

{
"base": {
"filename": "study_foo/subject_1/session_1/eeg/signals.xdf"

},
"study": {
"subject": "S001",
"session": 1,
"date": "2019-03-02"

},
"signal": {
"type": "EEG"

}
}

Base family

Each file has a minimal set of metadata needed by the Quetzal application for keeping track of files, where they are
stored, etc. These metadata are defined under the base family. Its keys are defined in the quetzal.app.models.
BaseMetadataKeys enumeration, which are:

• id: A unique identifier of the file. This is generated by Quetzal when the file is created as a UUID4 number. For
example: f5b460ad-b1e9-4e09-ac43-2c670ffeac6d.

• url: A uniform resource locator that indicates where Quetzal stores this file. Usually (but not necessarily!),
it has its id in it. For example: gs://some_bucket/f5b460ad-b1e9-4e09-ac43-2c670ffeac6d.
Note that the URL does not include the filename: these are just metadata like any other and many files in Quetzal
could have the exact same filename!

1.2. Design 5

https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)

Quetzal Documentation, Release 0.6.0-dev

• filename: The basename of the file when it was uploaded. Note that it is only the basename, that is, there is no
path in it. For example: signals.xdf.

• path: The pathname of the file when it was uploaded.

• size: Size in bytes of the file contents.

• checksum: MD5 digest of the files contents.

• date: Datetime when the file was uploaded.

• state: Enumeration indicating the state of the file. Used to mark temporary or deleted files.

The base family is entirely managed by Quetzal. It can only have the keys listed above. Their values are set by Quetzal
when the file is uploaded. It is not possible to change them afterwards, with the sole exception of the path.

Other families

Quetzal lets the user define any number of families. Within each family, there can be any number of keys. There is
only one constraint: the id key is reserved and managed by Quetzal.

Unstructured metadata

The contents of metadata in Quetzal are not constrained to a particular schema. They can be a string, a number, date,
and even lists or nested objects. This features gives great flexibility on how and what to store as metadata.

Considering all the elements mentioned in the Base family, Other families and this section, we can expand completely
define and expand the metadata of the first file in this page as:

{
"base": {
"id": "f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"url": "gs://some_bucket/f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"filename": "signals.xdf",
"path": "study_foo/subject_1/session_1/eeg",
"size": 19058370,
"checksum": "9529f1439ec59ca105de75973a241574",
"date": "2019-03-02T09:37:05.618034+00:00",
"state": "READY"

},
"study": {
"id": "f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"subject": "S001",
"session": 1,
"date": "2019-03-02"

},
"signal": {
"id": "f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"type": "EEG",
"sampling_rate": 512,
"samples": 15360,
"channels": ["Fpz", "F3", "F4", "Fz"],
"device": {

"name": "foo",
"manufacturer": "bar",
"firwmare_version": "1.0.1"

}

(continues on next page)

6 Chapter 1. Features

Quetzal Documentation, Release 0.6.0-dev

(continued from previous page)

}
}

Note that:

• All families have an id key with the same value.

• The base family has been populated with all the required keys.

• The signal family has been augmented with more complex objects types.

Family versioning

Metadata hold important information that is frequently used in many data analyses. For instance, questions like “Is
there a significant difference of X feature for each subject?” is a question that needs to use the subject identifier, which
is stored as metadata. Due to their importance, it is desirable to have some change or version control mechanism for
the metadata.

Quetzal tracks the changes of metadata with family versioning. Each family has a version number. Quetzal guarantees
that requests for the metadata of a particular family version are always the same. Changes of metadata values result in
a new version number for its associated family.

Workspace

All data and metadata in Quetzal is stored in a freezed state. There are no changes of the file contents or its metadata,
unless this happens inside a workspace.

In Quetzal, a workspace is a configuration of exact metadata families and their version. It is a snapshot of the
data and metadata that permits the addition of new files and the addition or modification of metadata. It also provides
a storage location for temporary files in a Cloud storage provider (typically a bucket). Finally, through a workspace, a
number of API operations are available, such as uploading files, creating views, among others.

Local vs global metadata

When working on a workspace, the metadata of files requested through the workspace will contain the changes or
additions that have been introduced in the workspace. On the other hand, when the metadata is requested without
a workspace, it will be the metadata of the latest known version of each family. These two cases are referred to,
respectively, as local and global metadata.

Let us illustrate with an example. Suppose that Quetzal currently has only one file, with metadata:

{
"base": {
"id": "f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"url": "gs://some_bucket/f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"filename": "signals.xdf",
"path": "study_foo/subject_1/session_1/eeg",
"size": 19058370,
"checksum": "9529f1439ec59ca105de75973a241574",
"date": "2019-03-02T09:37:05.618034+00:00",
"state": "READY"

},
"study": {
"id": "f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",

(continues on next page)

1.2. Design 7

Quetzal Documentation, Release 0.6.0-dev

(continued from previous page)

"subject": "S001",
"session": 1,
"date": "2019-03-02"

}
}

Now, assume that a user creates a workspace with id 1 that uses the base and study families. Immediately after its
creation, both the local and global metadata are the same, because a workspace is a snapshot of the metadata.

Let us say that the user sends a metadata modification to fix an incorrect subject identification, setting "subject"
to "S123" and adding an "operator" entry. After this operation, known in the API as Modify metadata, the local
and global metadata differ:

Local metadata

{
"base": {
"id": "f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"url": "gs://some_bucket/f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"filename": "signals.xdf",
"path": "study_foo/subject_1/session_1/eeg",
"size": 19058370,
"checksum": "9529f1439ec59ca105de75973a241574",
"date": "2019-03-02T09:37:05.618034+00:00",
"state": "READY"

},
"study": {
"id": "f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"subject": "S123",
"session": 1,
"date": "2019-03-02",
"operator": "John Doe"

}
}

Global metadata

{
"base": {
"id": "f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"url": "gs://some_bucket/f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"filename": "signals.xdf",
"path": "study_foo/subject_1/session_1/eeg",
"size": 19058370,
"checksum": "9529f1439ec59ca105de75973a241574",
"date": "2019-03-02T09:37:05.618034+00:00",
"state": "READY"

},
"study": {
"id": "f5b460ad-b1e9-4e09-ac43-2c670ffeac6d",
"subject": "S001",
"session": 1,
"date": "2019-03-02"

}
}

8 Chapter 1. Features

https://quetz.al/redoc#operation/workspace_file.update_metadata

Quetzal Documentation, Release 0.6.0-dev

Workspace views

Workspace state

Query

1.2.2 API

1.2.3 Usage workflow

1.3 License

BSD 3-Clause License

Copyright (c) 2018–2019, Quetzal contributors. Copyright (c) 2017–2018, CloudTS contributors. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

1.4 Quickstart

1.4.1 API documentation

Link to redoc.

1.3. License 9

Quetzal Documentation, Release 0.6.0-dev

1.4.2 Python client

Info and link to quetzal-client and quetzal-openapi-client.

1.4.3 Other clients

Postman, etc.

1.4.4 Public databases

List of public data.

1.5 Use cases

1.5.1 Basic queries

1.5.2 Downloading files

1.5.3 Downloading metadata

1.5.4 Uploading files

1.5.5 Uploading metadata

Quetzal Client CLI

$ quetzal-client foo

Python

import quetzal.client
client = quetzal.client.Client()
client.foo()

cURL

$ curl -X POST https://api.quetz.al/api/v1/data/workspaces/

1.6 Quickstart

To get a quick development environment follow these steps:

1. Install poetry, Docker, and docker-compose (usually docker-compose is already included by Docker).

2. Clone a local copy of Quetzal:

git clone git@github.com:quetz-al/quetzal.git

3. Create a virtual environment and install Quetzal:

10 Chapter 1. Features

https://quetzal-client.readthedocs.io/en/latest/
https://quetzal-open-client.readthedocs.io/en/latest/
https://python-poetry.org/docs/#installation
https://docs.docker.com/install/
https://docs.docker.com/compose/install/

Quetzal Documentation, Release 0.6.0-dev

cd quetzal
poetry install

4. For an environment based on docker-compose, build the Docker images:

docker-compose build

5. At this point you can get a local Quetzal server that saves files in a local filesystem. Launch it with:

docker-compose up

6. For a server that runs outside the docker-compose environment (for development or testing purposes), modify
the config.py file according to your needs (in particular the hostnames to the database or the rabbit queue)
and launch a server with:

FLASK_ENV=local-tests flask run --host 0.0.0.0 --port 5000

1.7 Cloud storage

Take the development environment to the next step by using cloud storage to store data. . . (description on how to do
this coming soon).

1.8 Structure

1.8.1 Services structure

Application, database, queue, worker, proxy.

1.8.2 Application structure

Connexion, Flask.

1.8.3 Database structure

Models and relations.

1.9 Code organization

Where to find what.

1.7. Cloud storage 11

Quetzal Documentation, Release 0.6.0-dev

1.10 Development use cases

Examples:

• Change behaviour of an existing API operation.

• Change the API definition.

• Change behaviour of background task.

• Cleaning and restarting the development environment.

• Change client behavior.

• Tag a new version.

• Update clients.

1.10.1 Create or modify a database model

This is done with SQLAlchemy. The procedure is to create a class like:

from quetzal.app import db

class Foo(db.Model):
... contents, according to SQLAlchemy ...
...

Normally, this goes into the :py:module:`quetzal.app.models` module.

You should also add it to the dictionary created in the make_shell_context function inside the quetzal.app.
create_app() factory function. This will automatically import the model when running flask shell.

Now, proceed to the Migrations procedure.

Migrations

Prepare a migration script

When creating or modifying a database model object, you need to make a migration script. This is done with alembic:

flask db migrate --rev-id ID -m MESSAGE

Here, ID is a revision identifier. Please use 0001, 0002, . . . and so on, according to the number of the files in the
migrations/ directory. MESSAGE should be a short description of what the migration does.

Note that if you are running a development instance, you may need to set some environment variables for the command
above to work. For example:

FLASK_ENV=development DB_HOST=localhost DB_USERNAME=postgres DB_PASSWORD=pg_password
→˓flask db migrate --rev-id ID -m MESSAGE

The flask db migrate command above will create a script called migrations/yyyymmdd_ID_MESSAGE.
py. Read and review its contents. It is important to remove any database modification that does not correspond to
what you have created or modified in your models. Alembic does most of the job to create this for you, but it does
make mistakes.

12 Chapter 1. Features

Quetzal Documentation, Release 0.6.0-dev

Apply a migration script

Finally to apply your migration:

flask db upgrade head

Whenever there is a model database modification and you update Quetzal, you need to run the migration script.

1.11 Testing

1.12 Deployment

1.12.1 Google Cloud Platform preparations

Quetzal can be deployed as a Kubernetes application on Google Cloud Platform (GCP). To achieve this, follow this
guide.

Project

1. Create a project on the GCP console by selecting New project .

When you create a GCP project, you will give it a unique name, its project id. In this guide, this identifier will
be referred as <your-project-id>.

2. After creating the project, head to the IAM & admin menu to see the list of members of the project.

Make sure that your email address is listed as a project owner.

3. Download and install gcloud.

Most of the operations described in this guide can be done through the GCP console, a very rich web-based
application to manage your cloud resources and services. However, this guide will do all operations on the
command-line interface using gcloud, because it is easier to describe.

4. Once you have installed gcloud, authenticate with the email address listed in step 2.

$ gcloud auth login
... a browser window will appear to login ...

5. Configure the default settings of the project.

$ gcloud config set project <your-project-id>
$ gcloud config set compute/zone europe-west1-c # or some other region

5. Verify your configuration.

$ gcloud config list
[compute]
region = europe-west1
zone = europe-west1-c
[core]
account = your.email@example.com # << verify that this is your email...
disable_usage_reporting = True
project = <your-project-id> # << ... and that this is your GCP project

(continues on next page)

1.11. Testing 13

https://console.cloud.google.com
https://console.cloud.google.com/projectcreate
https://console.cloud.google.com/iam-admin/iam
https://cloud.google.com/sdk/
https://console.cloud.google.com

Quetzal Documentation, Release 0.6.0-dev

(continued from previous page)

Your active configuration is: [default]

Credentials

Quetzal uses and manages several GCP resources through the GCP JSON API. This access is subject to the permissions
defined by the Identity and Access Management (IAM) component of GCP. You need to create a service account for
Quetzal and associate a list of permissions to it. In other words, you need to setup some credentials. The following
steps explain how to create these credentials.

1. Create a service account. Note the email entry, which will be used later.

$ gcloud iam service-accounts create quetzal-service-account \
--display-name="Quetzal application service account" \
--format json

Created service account [quetzal-service-account].
{
"displayName": "Quetzal application service account",
"email": "quetzal-service-account@<your-project-id>.iam.gserviceaccount.com",
...

}

2. Create a credentials key JSON file for the service account.

In the following code example, it is saved as conf/credentials.json.

$ gcloud iam service-accounts keys create \
conf/credentials.json \
--iam-account=quetzal-service-account@<your-project-id>.iam.gserviceaccount.com

Important: Anyone with this file could use your GCP resources, so this file should not be shared or committed
to your version control system.

Keep it secret, keep it safe.

3. Create an IAM role.

We need to create a role that encapsulates all the permissions needed by the Quetzal application. These permis-
sions are listed on the gcp_role.yaml file.

$ gcloud iam roles create quetzal_app_role \
--project <your-project-id> \
--file gcp_role.yaml

4. Associate the service account to the IAM role.

Finally, the service account created before needs to be associated with the permissions defined in the IAM role.

$ gcloud projects add-iam-policy-binding <your-project-id> \
--member=serviceAccount:quetzal-service-account@<your-project-id>.iam.

→˓gserviceaccount.com \
--role=projects/<your-project-id>/roles/quetzal_app_role

14 Chapter 1. Features

Quetzal Documentation, Release 0.6.0-dev

APIs

Quetzal uses several GCP services through their APIs. You need the enable the following APIs on GCP API library:

• Cloud Storage, used to store all files in Quetzal.

• Kubernetes Engine API, used to create a Kubernetes cluster that hosts the Quetzal services.

Docker & Kubernetes

Quetzal uses Docker images and the Google Container Registry (GCR).

1. Install Docker. Make sure you are able to create Docker images by following the test Docker installation
instructions.

2. Use gcloud to configure a Docker registry. This will enable Docker to push images to GCR.

$ gcloud auth configure-docker

3. Finally, install the kubernetes client:

$ gcloud components install kubectl

IP address reservation

This step is optional. When deploying Quetzal, you might want to associate it to some fixed IP address (in order to
associate it in your DNS records). You can reserve one IP as follows (change the region to your case):

$ gcloud compute addresses create quetzal-stage-server-ip \
--description="Quetzal stage server external IP" \
--region=europe-west1 \
--network-tier=PREMIUM

Get the reserved IP with the following command:

$ gcloud compute addresses list
NAME ADDRESS/RANGE TYPE PURPOSE NETWORK REGION SUBNET
→˓ STATUS
quetzal-stage-server-ip x.x.x.x europe-west1
→˓ RESERVED

Important: GCP reserved IPs incur in charges if they are not associated to a service. If you are not going to use it
immediately, you may want to do this as late as possible.

1.12. Deployment 15

https://console.cloud.google.com/apis/library
https://docs.docker.com/install/
https://docs.docker.com/get-started/#test-docker-installation

Quetzal Documentation, Release 0.6.0-dev

1.12.2 Deploying on GCP

The following instructions create a Kubernetes (k8s) cluster with a Quetzal server running on the staging configuration.
Change the sandbox- references to prod- to create a production server.

We need to do perform install several components: a k8s cluster, helm, ingress, certbot and the quetzal application.

Docker images

1. Follow the Local development server instructions and make sure that you are able to run and launch a develop-
ment environment. You will need to activate your virtual environment.

2. Read and follow the Google Cloud Platform preparations. You will need to have a gcloud correctly configured,
a JSON credentials file, and a reserved external IP address.

3. Build and upload the Docker container images to Google Container Registry.

$ flask quetzal deploy create-images \
--registry eu.gcr.io/<your-project-id>

Kubernetes cluster

1. Create a kubernetes cluster using gcloud:

gcloud container clusters create quetzal-cluster \
--num-nodes=1 \
--enable-autoscaling --min-nodes=1 --max-nodes=4

2. Verify that the cluster is up and running:

gcloud container clusters list
NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE
→˓NODE_VERSION NUM_NODES STATUS
quetzal-cluster europe-west1-c 1.11.7-gke.4 x.x.x.x n1-standard-1 1.
→˓11.7-gke.4 2 RUNNING

If you need more resources, you can change the number of nodes with:

gcloud container clusters resize quetzal-cluster --size N

or change the type of VM instance type for another machine type that uses more CPU or memory. This procedure
is out of scope of this guide, but you can read more at the node pools documentation.

3. Verify that kubectl is using the correct cluster:

kubectl config get-contexts

16 Chapter 1. Features

https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools

Quetzal Documentation, Release 0.6.0-dev

Part 2: Helm

1. Install helm. In general, follow the installing helm guide. For the particular case of OSX (with homebrew), this
can be done with:

brew install kubernetes-helm

2. Install helm k8s service account. This is explained in the helm installation guide:

kubectl create -f helm/rbac-config.yaml

3. Install helm k8s resources (also known as tiller) with a service account:

helm init --service-account tiller --wait

4. Verify that helm was correctly installed:

helm version

Client: &version.Version{SemVer:"v2.14.3", GitCommit:
→˓"0e7f3b6637f7af8fcfddb3d2941fcc7cbebb0085", GitTreeState:"clean"}
Server: &version.Version{SemVer:"v2.14.3", GitCommit:
→˓"0e7f3b6637f7af8fcfddb3d2941fcc7cbebb0085", GitTreeState:"clean"}

Part 3: Ingress

1. Install ingress resources. This is a prerequisite described in the ingress installation guide.

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/
→˓master/deploy/static/mandatory.yaml

2 Install ingress. If you have a static IP reserved for the Quetzal application, you must set it here. Otherwise, re-
move the --set controller.service.loadBalancerIP flag:

helm install stable/nginx-ingress --set controller.service.loadBalancerIP=X.X.X.X
→˓--name nginx-ingress

Certbot

This part is optional. You only need it if you want to have a signed certificate.

1. Install certbot. This part was inspired from the certbot acme nginx installation tutorial.

Install the cert-manager CRDs. We must do this before installing the Helm
chart in the next step for `release-0.9` of cert-manager:
kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-
→˓0.9/deploy/manifests/00-crds.yaml

Create the namespace for cert-manager
kubectl create namespace cert-manager

Label the cert-manager namespace to disable resource validation
kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

Add the Jetstack Helm repository

(continues on next page)

1.12. Deployment 17

https://helm.sh/docs/using_helm/#installing-helm
https://helm.sh/docs/using_helm/#tiller-and-role-based-access-control
https://kubernetes.github.io/ingress-nginx/deploy/#prerequisite-generic-deployment-command
https://docs.cert-manager.io/en/latest/tutorials/acme/quick-start/index.html

Quetzal Documentation, Release 0.6.0-dev

(continued from previous page)

helm repo add jetstack https://charts.jetstack.io

Updating the repo just incase it already existed
helm repo update

Install the cert-manager helm chart
helm install \
--name cert-manager \
--namespace cert-manager \
--version v0.9.1 \
jetstack/cert-manager

2. Customize certbot issuer definition declared on the helm/acme-issuer.yaml file and install it:

kubectl create -f helm/acme-issuer.yaml

Quetzal

1. Create the TLS secret that will be used for the nginx proxy.

kubectl create secret tls sandbox-tls-secret \
--cert=./conf/ssl/mysite.crt \
--key=./conf/ssl/mysite.key

2. Create GCP credentials secret that will be used by the app to communicate with the GCP resources (e.g. the
data buckets).

kubectl create secret generic sandbox-credentials-secrets \
--from-file=./conf/credentials.json

3. Generate some passwords. You can do this manually, or use the following helper commands. Keep them secret,
keep them safe.

Generate a random password for the database user.
flask quetzal utils generate-secret-key 8
YRADKSrPzlM

Generate a secret key for the Flask application.
flask quetzal utils generate-secret-key
sB-YgPO8ZVCmZyV5XKH0rg

4. Install quetzal using helm. Give it a name (like foo) and use the passwords generated in the previous step. Verify
that all the configuration values in helm/quetzal/values.yaml. Also verify the helm/quetzal/
templates/ingress.yaml file.

helm install \
--set db.username=... \
--set db.password=... \
--set app.flaskSecretKey=... \
--name foo ./helm/quetzal

Note that it is at this point that you will set a database username, password and flask secret.

5. Verify that everything is running.

You can check that all pods are running with:

18 Chapter 1. Features

Quetzal Documentation, Release 0.6.0-dev

kubectl get pods
NAME READY STATUS RESTARTS AGE
foo-quetzal-app-86669c8bc6-8vt9c 0/1 Pending 0 100s
foo-quetzal-app-86669c8bc6-dhwj6 1/1 Running 0 10m
foo-quetzal-app-86669c8bc6-s56wl 0/1 Pending 0 115s
foo-quetzal-app-86669c8bc6-w2ppm 0/1 Pending 0 115s
foo-quetzal-app-86669c8bc6-x5gvk 0/1 Pending 0 115s
foo-quetzal-db-cd68d97bc-tdj8l 1/1 Running 0 15m
foo-quetzal-rabbitmq-85bf9dddfd-kkvr7 1/1 Running 0 15m
foo-quetzal-worker-5dbb8c4dfd-fg8ct 1/1 Running 0
→˓9m41s
foo-quetzal-worker-5dbb8c4dfd-fv6bj 1/1 Running 0 10m
nginx-ingress-controller-84df6c4c54-2v8n4 1/1 Running 0 22m
nginx-ingress-default-backend-7d5dd85c4c-mc89t 1/1 Running 0 22m

Similarly, you can do the same with the services:

kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP
→˓PORT(S) AGE
app ClusterIP 10.0.11.94 <none> 5000/
→˓TCP 16m
db ClusterIP 10.0.13.162 <none> 5432/
→˓TCP 16m
kubernetes ClusterIP 10.0.0.1 <none> 443/
→˓TCP 26m
nginx-ingress-controller LoadBalancer 10.0.3.187 x.x.x.x.
→˓80:31388/TCP,443:32725/TCP 23m
nginx-ingress-default-backend ClusterIP 10.0.11.182 <none> 80/
→˓TCP 23m
rabbitmq ClusterIP 10.0.10.159 <none> 5672/
→˓TCP,15672/TCP 16m

If a pod fails to start correctly, examine it with:

kubectl describe pod foo-quetzal-app-7dcc756c9d-78n5w
... many details that can help determine the problem ...

6. Initialize the application.

If this is the first time the application is deployed, you need to initialize its database, buckets and users. Connect
to a web pod (like foo-quetzal-app-7dcc756c9d-78n5w, as listed above, but this will be specific to
your deployment) as:

kubectl exec -it foo-quetzal-app-7dcc756c9d-78n5w /bin/bash

and then run the initialization script:

./init.sh

which will ask for an administrator password. You can add new users at this point with:

flask quetzal user create alice alice.smith@example.com
flask quetzal role add alice public_read public_write

7. If you installed certbot, you should verify that the certificate was correctly generated with:

1.12. Deployment 19

Quetzal Documentation, Release 0.6.0-dev

kubectl get certificates
NAME READY SECRET AGE
sandbox-tls-secret True sandbox-tls-secret 1m

And also, the following curl command should work without any errors:

curl -vL https://sandbox.quetz.al/healthz

That’s all, you can now explore the documentation at https://sandbox.quetz.al/redoc, or wherever your configuration
points to.

1.12.3 Backups

Database

When deploying Quetzal as a kubernetes application (in GCP, for example), there is a CronJob configured to save
database dumps on a bucket dedicated to backups, once a week.

Manual backup

You can trigger a manual backup with kubernetes as follows:

use this first command to determine CRONJOB_NAME
kubectl get cronjobs -l app.kubernetes.io/component=database
then, create the job with:
kubectl create job --from=cronjob/CRONJOB_NAME CRONJOB_NAME-manual-001

Restoring a backup

The following procedure can restore one of these backups:

1. Connect to the database pod:

use this first command to determine DB_POD_NAME
kubectl get pods -l app.kubernetes.io/component=database
then, connect with:
kubectl exec -it DB_POD_NAME bash

2. Download and uncompress the backup file:

gsutil cp gs://BACKUP_BUCKET/db/BACKUP_NAME.bak.gz
gunzip BACKUP_NAME.bak

3. Make the following modifications on the BACKUP_NAME.bak file. You will need an editor on the pod so
install one with:

apt-get update && apt-get install --no-install-recommends --yes vim
vim BACKUP_NAME.bak

Then, comment (by adding -- at the beginning of each line) the following lines:

20 Chapter 1. Features

https://sandbox.quetz.al/redoc

Quetzal Documentation, Release 0.6.0-dev

CREATE ROLE dbuser;
ALTER ROLE dbuser;
...
CREATE DATABASE dbuser;

where dbuser is the username that you had set for the database when you deployed quetzal to kubernetes using
helm.

4. Put quetzal on maintenance mode.

Not sure how to do this yet.

Danger: On the following steps, you will erase your current database. Handle with care, because you may lose
your data.

You may want to do a Manual backup first.

5. Connect to postgres, disconnect any connection and drop the database:

First, connect to postgres but not to the quetzal database:
psql -U$POSTGRES_USER $POSTGRES_USER

SELECT pg_terminate_backend(pg_stat_activity.pid)
FROM pg_stat_activity
WHERE pg_stat_activity.datname = 'quetzal' -- change this if you changed the
→˓quetzal database name
AND pid <> pg_backend_pid();

DROP DATABASE quetzal; -- change this if you change the quetzal database name
DROP DATABASE unittests;
DROP ROLE db_user;
DROP ROLE db_ro_user;
exit;

6. Restore the database from the backup:

psql -U$POSTGRES_USER --set ON_ERROR_STOP=on -f ./BACKUP_NAME.bak

1.13 Development

1.13.1 Local development server

The following instructions assume that you have are using Linux or OSX. For instructions under Windows, please help
us by adapting them and filing a pull request.

1. Clone the Quetzal repository:

$ git clone git@github.com:quetz-al/quetzal.git

2. Install Docker. Make sure you are able to create Docker images by following the test Docker installation
instructions.

3. Create a virtual environment with your favorite virtual environment manager, but make sure it is a Python 3
environment. Then, install the requirement libraries:

1.13. Development 21

https://github.com/quetz-al/quetzal/pull/new/master
https://docs.docker.com/install/
https://docs.docker.com/get-started/#test-docker-installation

Quetzal Documentation, Release 0.6.0-dev

$ python3 -m venv ${HOME}/.virtualenvs/quetzal-env
$ source ${HOME}/.virtualenvs/quetzal-env/bin/activate
$ pip install -r requirements-dev.txt

At this point, you will need to prepare your Google Cloud Platform credentials (if you are going to use Google buckets
to save data files) and prepare SSL certificates.

Google Cloud Platform

Using Google buckets to save data needs some preparations described in Google Cloud Platform preparations. For a
development server you need to follow the Project, Credentials and APIs instructions.

SSL

Quetzal uses HTTPS for all its API operations. This needs a SSL certificate that can be generated as follows.

1. First, create a SSL key and certificate using openssl:

$ mkdir -p conf/ssl
$ openssl req -x509 -newkey rsa:4096 \
-keyout conf/ssl/mysite.key -out conf/ssl/mysite.crt \
-days 365 -nodes

2. Optionally, but highly recommended, generate a DH exchange key prime number:

$ openssl dhparam -out conf/ssl/dhparam.pem 2048

Note that these are auto-signed keys and they are only suitable for a development or testing scenario. When deploying
on a production server, the recommended approach is to use Let’s Encrypt as a certificate authority and CertBot to
obtain the final, signed certificates. However, you will still need these auto-signed keys as a temporary solution until
CertBot runs the first time.

Docker-compose

We are almost ready to have a Quetzal development server ready. This local server runs as a multi-container application
managed by docker-compose.

1. Read the configuration entries in config.py and change them accordingly in the docker-compose.yaml
file.

If you are going to use Google buckets to store data, follow the instructions concerning the Google Cloud
Platform and verify the configuration variables with the QUETZAL_GCP_ prefix.

If you prefer saving your files locally, set the QUETZAL_DATA_STORAGE to 'file' and ignore the instruc-
tions related to Google Cloud Platform.

2. Build your docker-compose services:

$ docker-compose build

3. Run Quetzal through docker-compose:

$ docker-compose up

4. If this the first time you run Quetzal, you need to setup the database, create some roles and users. You can do
this while the server is running with the following script:

22 Chapter 1. Features

https://letsencrypt.org/
https://certbot.eff.org/
https://certbot.eff.org/

Quetzal Documentation, Release 0.6.0-dev

$ docker-compose exec web ./init.sh

Usage notes

If you want to stop the Quetzal application, use:

$ docker-compose stop

To reset and erase the Quetzal application, use:

$ docker-compose down

Warning: Using docker-compose down will erase your database. You will lose your data. Use this only to
reset and start a fresh Quetzal application.

1.13.2 Reference

Flask-SQLAlchemy Models

class quetzal.app.models.ApiKey(**kwargs)

class quetzal.app.models.BaseMetadataKeys
Set of metadata keys that exist in the base metadata family

The base metadata family is completely managed by Quetzal; a user cannot set or change its values (with the
exception of the value for the path or filename keys). This enumeration defines the set of keys that exist in this
family.

CHECKSUM = 'checksum'
MD5 checksum of the file

DATE = 'date'
Date when this file was created.

FILENAME = 'filename'
Filename, without its path component.

ID = 'id'
Unique file identifier.

PATH = 'path'
Path component of the filename.

SIZE = 'size'
Size in bytes of the file.

STATE = 'state'
State of the file; see FileState.

URL = 'url'
URL where this file is stored.

class quetzal.app.models.Family(**kwargs)
Quetzal metadata family

1.13. Development 23

Quetzal Documentation, Release 0.6.0-dev

In quetzal, metadata are organized in semantic groups that have a name and a version number. This is the
definition of a metadata _family_. This class represents this definition. It is attached to a workspace, until the
workspace is committed: at this point the family will be disassociated from the workspace to become global
(available as public information).

id
Identifier and primary key of a family.

Type int

name
Name of the family.

Type str

version
Version of the family. Can be None during a workspace creation, and until its initialization, to express the
latest available version.

Type int

description
Human-readable description of the family and its contents, documentation, and any other useful comment.

Type str

fk_workspace_id
Reference to the workspace that uses this family. When None, it means that this family and all its associ-
ated metadata is public.

Type int

Extra attributes

metadata_set All Metadata entries associated to this family.

increment()
Create a new family with the same name but next version number

The new family will be associated to the same workspace.

class quetzal.app.models.FileState
State of a Quetzal file

Quetzal files have a status, saved in their base metadata under the state key. It can only have the values defined
in this enumeration.

DELETED = 'deleted'
File has been deleted.

Deleted files will have their metadata cleared when the workspace is committed.

If it was an already committed file, its contents will not be removed from the global data storage directory
or bucket, but its metadata will be cleared. If it was a file that was not committed yet, it will be erased from
its workspace data directory or bucket.

Deleted files are not considered in queries.

READY = 'ready'
File is ready

It has been uploaded, it can be downloaded, its metadata can be changed and when its workspace is
committed, it will be moved to the global data storage directory or bucket.

24 Chapter 1. Features

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Quetzal Documentation, Release 0.6.0-dev

TEMPORARY = 'temporary'
File is ready but temporary

Like READY, but this file will not be considered when the workspace is committed. That is, it will not be
copied to the global data storage directory or bucket.

class quetzal.app.models.Metadata(**kwargs)
Quetzal unstructured metadata

Quetzal defines metadata as a dictionary associated with a family. Families define the semantic organization and
versioning of metadata, while this class gathers all the metadata key and values in a dictionary, represented as a
JSON object.

id
Identifier and primary key of a metadata entry.

Type int

id_file
Unique identifier of a file as a UUID number version 4. This identifier is also present and must be the same
as the id entry in the json member.

Type uuid.UUID

json
A json representation of metadata. Keys are metadata names and values are the related values. It may be a
nested object if needed.

Type dict

Extra attributes

family The related Family associated to this metadata.

static get_latest(file_id, family)
Retrieve the latest metadata of a file under a particular family

static get_latest_global(file_id=None, family_name=None)
Retrieve the latest metadata of a file under a particular family

to_dict()
Return a dictionary representation of the metadata

Used to conform to the metadata details object on the OpenAPI specification.

Returns Dictionary representation of this object.

Return type dict

update(json)
Update the underlying json metadata with the values of a new one

This function takes the current json saved in this metadata object and updates it (like dict.update)
with the new values found in the json input parameter. This does not remove any key; it adds new keys or
changes any existing one.

Since SQLAlchemy does not detect changes on a JSONB column unless a new object is assigned to it, this
function creates a new dictionary and replaces the previous one.

Changes still need to be committed through a DB session object.

Parameters json (dict) – A new metadata object that will update over the existing one

Returns

1.13. Development 25

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Quetzal Documentation, Release 0.6.0-dev

Return type self

class quetzal.app.models.MetadataQuery(**kwargs)
Query for metadata on Quetzal

Queries on Quetzal are temporarily saved as objects. This was initially thought as a mechanism for easier and
faster paginations, to avoid verifying that a query is valid every time and possibly to compile these queries if
needed.

id
Identifier and primary key of a query.

Type int

dialect
Dialect used on this query.

Type QueryDialect

code
String representation of the query. May change in the future.

Type str

fk_workspace_id
Reference to the Workspace where this query is applied. If None, the query is applied on the global,
committed metadata.

Type int

fk_user_id
Reference to the User who created this query.

Type int

static get_or_404(qid)
Get a workspace by id or raise an APIException

static get_or_create(dialect, code, workspace, owner)
Retrieve a query by its fields or create a new one

to_dict(results=None)
Create a dict representation of the query and its results

Used to conform to the OpenAPI specification of the paginable query results

Parameters results (dict) – Results as a paginable object.

Returns Dictionary representation of this object.

Return type dict

class quetzal.app.models.QueryDialect
Query dialects supported by Quetzal

class quetzal.app.models.Role(**kwargs)
Authorization management role on Quetzal

Quetzal operations are protected by an authorization system based on roles. A user may have one to many roles;
a role defines what operations the associated users can do.

Note that the n to n relationship of roles and users is implemented through the roles_users_table.

id
Identifier and primary key of a role.

26 Chapter 1. Features

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Quetzal Documentation, Release 0.6.0-dev

Type int

name
Unique name of the role.

Type str

description
Human-readable description of the role.

Type str

Extra attributes

users Set of users associated with this role. This attribute is defined through a backref in User.

class quetzal.app.models.User(**kwargs)
Quetzal user

Almost all operations on Quetzal can only be done with an authenticated user. This model defines the internal
information that Quetzal needs for bookeeping its users, permissions, emails, etc.

id
Identifier and primary key of a user.

Type int

username
Unique string identifier of a user (e.g. admin, alice, bob).

Type str

email
Unique e-mail address of a user.

Type str

password_hash
Internal representation of the user password with salt.

Type str

token
Unique, temporary authorization token.

Type str

token_expiration
Expiration date of autorization token.

Type datetime

active
Whether this user is active (and consequently can perform operations) or not.

Type bool

1.13. Development 27

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Quetzal Documentation, Release 0.6.0-dev

Extra attributes

roles Set of Roles associated with this user.

workspaces Set of Workspaces owned by this user.

queries Set of Queries created by this user.

check_password(password)
Check if a password is correct.

Parameters password (str) – The password to verify against the hash-salted stored pass-
word.

Returns True when the provided password matches the hash-salted stored one.

Return type bool

static check_token(token)
Retrieve a user by token

No user will be returned when the token is expired or does not exist.

Parameters token (str) – Authorization token.

Returns user – User with the provided token, or None when either the token was not found or
it was expired.

Return type User

get_token(expires_in=3600)
Create or retrieve an authorization token

When a user already has an authorization token, it returns it.

If there is no authorization token or the existing authorization token for this user is expired, this function
will create a new one as a random string.

The changes on this instance are not propagated to the database (this must be done by the caller), but this
instance added to the current database session.

Parameters expires_in (int) – Expiration time, in seconds from the current date, used
when creating a new token.

Returns The authorization token

Return type str

property is_active
Property accessor for active.

Needed to conform to the flask_login.UserMixin interface.

revoke_token()
Revoke the authorization token

The changes on this instance are not propagated to the database (this must be done by the caller), but this
instance added to the current database session.

set_password(password)
Change the password of this user.

This function set and store the new password as a salt-hashed string.

The changes on this instance are not propagated to the database (this must be done by the caller), but this
instance added to the current database session.

28 Chapter 1. Features

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://flask-login.readthedocs.io/en/latest/index.html#flask_login.UserMixin

Quetzal Documentation, Release 0.6.0-dev

Parameters password (str) – The new password.

class quetzal.app.models.Workspace(**kwargs)
Quetzal workspace

In Quetzal, all operations on files and metadata are sandboxed in workspaces. Workspaces define the exact
metadata families and versions, which in turn provides a snapshot of what files and metadata are available. This
is the base of the reproducibility of dataset in Quetzal and the traceability of the data changes.

Workspaces also provide a storage directory or bucket where the user can upload new and temporary data files.

id
Identifier and primary key of a workspace.

Type int

name
Short name for a workspace. Unique together with the owner’s username.

Type str

_state
State of the workspace. Do not use directly, use its property accessors.

Type WorkspaceState

description
Human-readable description of the workspace, its purpose, and any other useful comment.

Type str

creation_date
Date when the workspace was created.

Type datetime

temporary
When True, Quetzal will know that this workspace is intended for temporary operations and may be
deleted automatically when not used for a while. When False, only its owner may delete it.

Type bool

data_url
URL to the data directory or bucket where new files associated to this workspace will be saved.

Type str

pg_schema_name
Used when creating structured views of the structured metadata, this schema name is the postgresql schema
where temporary tables exists with a copy of the unstructured metadata.

Type str

fk_user_id
Owner of this workspace as a foreign key to a User.

Type int

fk_last_metadata_id
Reference to the most recent Metadata object that has been committed at the time when this workspace
was created. This permits to have a reference to which global metadata entries should be taken into account
when determining the metadata in this workspace.

Type int

1.13. Development 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Quetzal Documentation, Release 0.6.0-dev

Extra attributes

families Set of Families (including its version) used for this workspace.

queries Set of Queries created on this workspace.

property can_change_metadata
Returns True when metadata can be changed on the current workspace state

get_base_family()
Get the base family instance associated with this workspace

get_current_metadata()
Get the metadata that has been added or modified in this workspace

In contrast to get_previous_metadata(), this function only retrieves the metadata that has been
changed on this workspace after its creation.

get_metadata()
Get a union of the previous and new metadata of this workspace

This function uses a combination of the results of get_previous_metadata() and
get_current_metadata() to obtain the merged version of both. This represents the defini-
tive metadata of each file, regardless of changes before or after the creation of this workspace.

static get_or_404(wid)
Get a workspace by id or raise a quetzal.app.api.exceptions.
ObjectNotFoundException

get_previous_metadata()
Get the global metadata of this workspace

The global metadata is the metadata that already has been committed, but it must also have a version value
that is under the values declared for this workspace.

make_schema_name()
Generate a unique schema name for its internal structured metadata views

property state
Property accessor for the workspace state

to_dict()
Return a dictionary representation of the workspace

This is used in particular to adhere to the OpenAPI specification of workspace details objects.

Returns Dictionary representation of this object.

Return type dict

class quetzal.app.models.WorkspaceState
Status of a workspace.

Workspaces in Quetzal have a state that defines what operations can be performed on them. This addresses the
need for long-running tasks that modify the workspace, such as initialization, committing, deleting, etc.

The transitions from one state to another is defined on this enumeration on the transitions() function. The
following diagram illustrates the possible state transitions:

The verification of state transitions is implemented in the quetzal.app.models.Workspace.state
property setter function.

COMMITTING = 'committing'
The workspace is committing its files and metadata.

30 Chapter 1. Features

https://docs.python.org/3/library/stdtypes.html#dict

Quetzal Documentation, Release 0.6.0-dev

The workpace will remain on this state until the committing routine finishes. No operation is possible until
then.

CONFLICT = 'conflict'
The workspace detected a conflict during its commit routine.

The workpace will remain on this state until the administrator fixes this situation. No operation is possible.

DELETED = 'deleted'
The workspace has been deleted.

The instance of the workspace remains in database for bookeeping, but there is no operation possible with
it at this point.

DELETING = 'deleting'
The workspace is deleting its files and itself.

The workpace will remain on this state until the deleting routine finishes. No operation is possible.

INITIALIZING = 'initializing'
The workspace has just been created.

The workspace will remain on this state until the initialization routine finishes. No operation is possible
until then.

INVALID = 'invalid'
The workspace has encountered an unexpected error.

The workpace will remain on this state until the administrator fixes this situation. No operation is possible.

READY = 'ready'
The workspace is ready.

The workspace can now be scanned, updated, committed or deleted. Files can be uploaded to it and their
metadata can be changed.

SCANNING = 'scanning'
The workspace is updating its internal views.

The workpace will remain on this state until the scanning routine finishes. No operation is possible until
then.

UPDATING = 'updating'
The workspace is updating its metadata version definition.

The workpace will remain on this state until the updating routine finishes. No operation is possible until
then.

quetzal.app.models.roles_users_table = Table('roles_users', MetaData(bind=None), Column('fk_user_id', Integer(), ForeignKey('user.id'), table=<roles_users>), Column('fk_role_id', Integer(), ForeignKey('role.id'), table=<roles_users>), schema=None)
Auxiliary table associating users and roles

All modules

quetzal package

Subpackages

quetzal.app package

quetzal.app.create_app(config_name=None)

1.13. Development 31

Quetzal Documentation, Release 0.6.0-dev

Subpackages

quetzal.app.api package

Subpackages

quetzal.app.api.data package

Subpackages

quetzal.app.api.data.storage package

quetzal.app.api.data.storage.set_permissions(file_obj, owner)
Set the permissions of the file

Change the data object file_obj permissions to set owner as the user that owns this file.

Parameters

• file_obj (object) – Object pointing to a file, as returned by upload().

• owner (quetzal.app.models.User) – User object that will own the file.

Raises quetzal.app.api.exceptions.QuetzalException – When the storage back-
end is unknown. Exceptions by the dispatched functions are not captured here.

quetzal.app.api.data.storage.upload(filename, contents, location)
Upload a file

Upload the contents as a file named filename in location.

This function dispaches the upload operation on the configured storage backend.

Parameters

• filename (str) – Target file name where the contents will be saved.

• contents (file-like) – A buffer of bytes with the file contents.

• location (str) – URL of the target location where the file will be saved. This should be
the URL of a workspace

Returns

• url (str) – URL to where the file was uploaded.

• obj (object) – An object pointing where the file was uploaded for further manipulation. Its
type depends on the data backend.

Raises quetzal.app.api.exceptions.QuetzalException – When the storage back-
end is unknown. Exceptions by the dispatched functions are not captured here.

32 Chapter 1. Features

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Quetzal Documentation, Release 0.6.0-dev

Submodules

quetzal.app.api.data.storage.gcp module

quetzal.app.api.data.storage.gcp.set_permissions(blob, owner)

quetzal.app.api.data.storage.gcp.upload(filename, content, location)
Save a file on a local filesystem.

Implements the upload mechanism of the GCP backend.

Parameters

• filename (str) – Filename where the file will be saved. It can include a relative path.

• content (file-like) – Contents of the file.

• location (str) – URL of the bucket the file will be saved. The filename parameter will
be relative to this parameter.

Returns

• url (str) – URL to the uploaded file. Its format will be gs://url/to/file.

• blob_obj (google.cloud.storage.blob.Blob) – Blob object where the file was
saved.

Raises quetzal.app.api.exceptions.QuetzalException – When the location is the
global data bucket. This is not permitted.

quetzal.app.api.data.storage.local module

quetzal.app.api.data.storage.local.set_permissions(file_obj, owner)

quetzal.app.api.data.storage.local.upload(filename, content, location)
Save a file on a local filesystem.

Implements the upload mechanism of the local file storage backend.

Parameters

• filename (str) – Filename where the file will be saved. It can include a relative path.

• content (file-like) – Contents of the file.

• location (str) – URL where the file will be saved. The filename parameter will be
relative to this parameter.

Returns

• url (str) – URL to the uploaded file. Its format will be file://absolute/path/to/
file.

• path_obj (pathlib.Path) – Path object where the file was saved.

Raises quetzal.app.api.exceptions.QuetzalException – When the location is the
global data directory. This is not permitted.

1.13. Development 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Quetzal Documentation, Release 0.6.0-dev

Submodules

quetzal.app.api.data.file module

quetzal.app.api.data.file._all_metadata(file_id, workspace)
Gather all metadata of a file in a workspace

If a file has metadata of families f1, f2, . . . , this function returns a dictionary {'f1': {...}, 'f2':
{...}, ...}. This structure is suitable for the responses of file fetch metadata operations.

quetzal.app.api.data.file._now()
Get a datetime object with the current datetime (in UTC) as a string

This function is also created for ease of unit test mocks

quetzal.app.api.data.file._verify_filename_path(filename, path)
Perform some security considerations on filename and path

quetzal.app.api.data.file.create(*, wid, content=None, user, token_info=None)
Create a file on a workspace

This function is the implementation of the upload file endpoint in the Quetzal API. After verifying the workspace
and user permissions, it will save the contents of the file in the configured file backend. Finally, it initializes the
base metadata family entries for the new file.

Parameters

• wid (int) – Workspace identifier where the file will be uploaded.

• content (file-like) – Contents of the file.

• user (quetzal.app.models.User) – User that owns the file. This parameter is set
by connexion.

• token_info – Authentication token. This parameter is set by connexion.

Returns

• details (dict) – File details object.

• code (int) – HTTP response code.

API endpoints

• POST /api/v1/data/workspaces/{wid}/files/ See in redoc.

quetzal.app.api.data.file.delete(*, wid, uuid, user, token_info=None)

quetzal.app.api.data.file.details(*, uuid)
Get the contents or metadata of a file that has been committed

quetzal.app.api.data.file.details_w(*, wid=None, uuid)
Get contents or metadata of a file on a workspace

quetzal.app.api.data.file.fetch(*args, **kwargs)
Get all the files that have been committed.

quetzal.app.api.data.file.fetch_w(*, wid)
Get all the files on a workspace

quetzal.app.api.data.file.set_metadata(*, wid, uuid, body)

quetzal.app.api.data.file.update_metadata(*, wid, uuid, body)

34 Chapter 1. Features

https://docs.python.org/3/library/functions.html#int
https://quetz.al/redoc#operation/workspace_file.create

Quetzal Documentation, Release 0.6.0-dev

quetzal.app.api.data.query module

quetzal.app.api.data.query.create(*, body, user, token_info=None)

quetzal.app.api.data.query.create_w(*, wid, body, user, token_info=None)

quetzal.app.api.data.query.details(*, qid, user, token_info=None)

quetzal.app.api.data.query.details_w(*, wid, qid, user, token_info=None)

quetzal.app.api.data.query.fetch(*, user, token_info=None)

quetzal.app.api.data.query.fetch_w(*, wid, user, token_info=None)

quetzal.app.api.data.tasks module

quetzal.app.api.data.tasks.merge(ancestor, theirs, mine)

quetzal.app.api.data.workspace module

quetzal.app.api.data.workspace.commit(*, wid)
Request commit of all metadata and files of a workspace

Parameters wid (int) – Workspace identifier

Returns

• dict – Workspace details

• int – HTTP response code

quetzal.app.api.data.workspace.create(*, body, user, token_info=None)
Create a new workspace

Returns

• dict – Workspace details

• int – HTTP response code

quetzal.app.api.data.workspace.delete(*, user, wid)
Request deletion of a workspace by id

Parameters wid (int) – Workspace identifier

Returns

• dict – Workspace details

• int – HTTP response code

quetzal.app.api.data.workspace.details(*, wid)
Get workspace details by id

Parameters wid (int) – Workspace identifier

Returns

• dict – Workspace details

• int – HTTP response code

quetzal.app.api.data.workspace.fetch(*, user)
List workspaces

1.13. Development 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Quetzal Documentation, Release 0.6.0-dev

Returns

• list – List of Workspace details as a dictionaries

• int – HTTP response code

quetzal.app.api.data.workspace.scan(*, wid)
Request an update of the views of a workspace

Parameters wid (int) – Workspace identifier

Returns

• dict – Workspace details

• int – HTTP response code

Submodules

quetzal.app.api.auth module

quetzal.app.api.auth.check_apikey(key, required_scopes=None)

quetzal.app.api.auth.check_basic(username, password, required_scopes=None)

quetzal.app.api.auth.check_bearer(token)

quetzal.app.api.auth.get_token(*, user)

quetzal.app.api.auth.logout(*, user)

quetzal.app.api.exceptions module

exception quetzal.app.api.exceptions.APIException(status=400, title=None, de-
tail=None, type=None, in-
stance=None, headers=None,
ext=None)

Bases: connexion.exceptions.ProblemException

Exception for API-related problems

Use this class when a route function fails but the API should respond with an appropriate error response

exception quetzal.app.api.exceptions.Conflict
Bases: quetzal.app.api.exceptions.QuetzalException

exception quetzal.app.api.exceptions.EmptyCommit
Bases: quetzal.app.api.exceptions.QuetzalException

exception quetzal.app.api.exceptions.InvalidTransitionException
Bases: quetzal.app.api.exceptions.QuetzalException

exception quetzal.app.api.exceptions.ObjectNotFoundException(status=400, ti-
tle=None, de-
tail=None,
type=None, in-
stance=None,
headers=None,
ext=None)

Bases: quetzal.app.api.exceptions.APIException

36 Chapter 1. Features

https://docs.python.org/3/library/functions.html#int

Quetzal Documentation, Release 0.6.0-dev

Exception for cases when an object does not exist

Typically, when a workspace or file does not exist

exception quetzal.app.api.exceptions.QuetzalException
Bases: Exception

Represents an internal error in the data API

Use for exceptions that don’t need to be transmitted back as a response

exception quetzal.app.api.exceptions.WorkerException
Bases: quetzal.app.api.exceptions.QuetzalException

quetzal.app.api.router module

Router controller to let Connexion link OAS operation ids to custom functions.

On a OpenAPI specification, operationIds can be as specific as: app.api.data.workspace.create. However,
other clients may use this long name, which generates functions with long names. Moreover, the real use-case of
operationId is to provide a unique identifier to each operation.

To simplify the client code, we use Connexion’s vendor-specific tag x-openapi-router-controller to pro-
vide a class to associate operations to Python functions. Following Connexion’s implementation, the resolved name
is controller.operationId where controller is the value of the x-openapi-router-controller
tag.

This Python function provides the functions and associations to use the x-openapi-router-controller tag
and simplify the specification code.

class quetzal.app.api.router.AuthRouter
Bases: object

Router for authentication operations.

Use as:

operationId: auth.func
x-openapi-router-controller: app.api.router

Where func is a member of this class.

get_token()

logout()

class quetzal.app.api.router.PublicRouter
Bases: object

Router for operations on public resources.

Use as:

operationId: public.func
x-openapi-router-controller: app.api.router

Where func is a member of this class.

file_details()
Get the contents or metadata of a file that has been committed

file_fetch(**kwargs)
Get all the files that have been committed.

1.13. Development 37

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Quetzal Documentation, Release 0.6.0-dev

query_create(*, user, token_info=None)

query_details(*, user, token_info=None)

query_fetch(*, token_info=None)

class quetzal.app.api.router.WorkspaceFilesRouter
Bases: object

Router for operations on files inside a workspace.

Use as:

operationId: workspace_file.func
x-openapi-router-controller: app.api.router

Where func is a member of this class.

create(*, content=None, user, token_info=None)
Create a file on a workspace

This function is the implementation of the upload file endpoint in the Quetzal API. After verifying the
workspace and user permissions, it will save the contents of the file in the configured file backend. Finally,
it initializes the base metadata family entries for the new file.

Parameters

• wid (int) – Workspace identifier where the file will be uploaded.

• content (file-like) – Contents of the file.

• user (quetzal.app.models.User) – User that owns the file. This parameter is set
by connexion.

• token_info – Authentication token. This parameter is set by connexion.

Returns

• details (dict) – File details object.

• code (int) – HTTP response code.

API endpoints

• POST /api/v1/data/workspaces/{wid}/files/ See in redoc.

delete(*, uuid, user, token_info=None)

details(*, uuid)
Get contents or metadata of a file on a workspace

fetch()
Get all the files on a workspace

set_metadata(*, uuid, body)

update_metadata(*, uuid, body)

class quetzal.app.api.router.WorkspaceQueryRouter
Bases: object

Router for operations on queries inside a workspace.

Use as:

38 Chapter 1. Features

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://quetz.al/redoc#operation/workspace_file.create
https://docs.python.org/3/library/functions.html#object

Quetzal Documentation, Release 0.6.0-dev

operationId: workspace_query.func
x-openapi-router-controller: app.api.router

Where func is a member of this class.

create(*, body, user, token_info=None)

details(*, qid, user, token_info=None)

fetch(*, user, token_info=None)

class quetzal.app.api.router.WorkspaceRouter
Bases: object

Router for workspace operations.

Use as:

operationId: workspace.func
x-openapi-router-controller: app.api.router

Where func is a member of this class.

commit()
Request commit of all metadata and files of a workspace

Parameters wid (int) – Workspace identifier

Returns

• dict – Workspace details

• int – HTTP response code

create(*, user, token_info=None)
Create a new workspace

Returns

• dict – Workspace details

• int – HTTP response code

delete(*, wid)
Request deletion of a workspace by id

Parameters wid (int) – Workspace identifier

Returns

• dict – Workspace details

• int – HTTP response code

details()
Get workspace details by id

Parameters wid (int) – Workspace identifier

Returns

• dict – Workspace details

• int – HTTP response code

fetch()
List workspaces

1.13. Development 39

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Quetzal Documentation, Release 0.6.0-dev

Returns

• list – List of Workspace details as a dictionaries

• int – HTTP response code

scan()
Request an update of the views of a workspace

Parameters wid (int) – Workspace identifier

Returns

• dict – Workspace details

• int – HTTP response code

quetzal.app.api.router.auth
alias of quetzal.app.api.router.AuthRouter

quetzal.app.api.router.public
alias of quetzal.app.api.router.PublicRouter

quetzal.app.api.router.workspace
alias of quetzal.app.api.router.WorkspaceRouter

quetzal.app.api.router.workspace_file
alias of quetzal.app.api.router.WorkspaceFilesRouter

quetzal.app.api.router.workspace_query
alias of quetzal.app.api.router.WorkspaceQueryRouter

quetzal.app.cli package

Submodules

quetzal.app.cli.data module

quetzal.app.cli.deployment module

quetzal.app.cli.users module

quetzal.app.cli.utils module

quetzal.app.helpers package

Submodules

quetzal.app.helpers.celery module

Improved version of the celery object of flask_celery_helper package

The original flask_celery.Celery object has a bug where the context is pushed during unit tests. This file extends and
rewrites the related code to avoid this bug.

This bug has been documented on: https://github.com/Robpol86/Flask-Celery-Helper/issues/23

40 Chapter 1. Features

https://docs.python.org/3/library/functions.html#int
https://github.com/Robpol86/Flask-Celery-Helper/issues/23

Quetzal Documentation, Release 0.6.0-dev

class quetzal.app.helpers.celery.Celery(app=None)
Bases: flask_celery.Celery

init_app(app)
Actual method to read celery settings from app configuration and initialize the celery instance.

Positional arguments: app – Flask application instance.

quetzal.app.helpers.celery._mockable_call(base, obj, *args, **kwargs)
Helper function to replace Task.__call__ for mockable tests

quetzal.app.helpers.celery.log_task(task, level=20, limit=10, _logger=None)
Log the ids of a task or chain of tasks in celery

quetzal.app.helpers.files module

quetzal.app.helpers.files.get_readable_info(file_obj)
Extract useful information from reading a file

This function calculates the md5sum and the file size in bytes from a file-like object. It does both operations at
the same time, which means that there is no need to read the object twice.

After this function reads the file content, it will set the file pointer to its original position through tell.

Parameters file_obj (file-like) – File object. It needs the read and tell methods.

Returns md5sum, size – MD5 sum and size of the file object contents

Return type str, int

quetzal.app.helpers.files.split_check_path(filepath)

quetzal.app.helpers.google_api module

quetzal.app.helpers.google_api.get_bucket(url, *, client=None)
Get a GCP bucket object from an URL

Parameters

• url (str) – URL of the bucket

• client (google.storage.client.Client, optional) – GCP client instance
to use. If not set it uses get_client().

Returns bucket – A bucket instance

Return type google.storage.bucket.Bucket

quetzal.app.helpers.google_api.get_client()
Create a GCP client built from the app configuration

The client is saved in the currrent application context and will be reused in any future call on this context.

quetzal.app.helpers.google_api.get_data_bucket(*, client=None)
Get Quetzal’s data bucket

Parameters client (google.storage.client.Client, optional) – GCP client in-
stance to use. If not set it uses get_client().

Returns bucket – A bucket instance

Return type google.storage.bucket.Bucket

1.13. Development 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Quetzal Documentation, Release 0.6.0-dev

quetzal.app.helpers.google_api.get_object(url, *, client=None)

quetzal.app.helpers.pagination module

class quetzal.app.helpers.pagination.CustomPagination(*args, **kwargs)
Bases: flask_sqlalchemy.Pagination

A specialization of flask_sqlalchemy pagination object

This specialization adds a utility method to produce a dictionary that conforms to Quetzal’s pagination specifi-
cation.

In addition to the original constructor parameters, this object takes a serializer method that converts whatever
object type that the query from the paginate call generates and converts it to an object that must be JSON
serializable. If not provided, the object is used as-is.

next(error_out=False)
Returns a Pagination object for the next page.

prev(error_out=False)
Returns a Pagination object for the previous page.

response_object()

quetzal.app.helpers.pagination.paginate(queriable, *, page=None, per_page=None,
error_out=True, max_per_page=None, serial-
izer=None)

Returns per_page items from page page.

This is a specialization of flask_sqlalchemy.BaseQuery.paginate with some custom modifications:

• It changes the original behavior to respond throw APIException instead of calling abort. The status code
has also been changed to 400 instead of 404. Normally, this errors should not be reachable since connexion
handles the input validation.

• In addition to handling regular flask_sqlalchemy.BaseQuery objects, it can also accept a cursor.

• In addition to these changes, this function returns a custom pagination object that provides a re-
sponse_object method that can build a response according to Quetzal’s paginated response specification.

• Uses keyword arguments to avoid incorrect arguments

The original docstring is as follows:

If page or per_page are None, they will be retrieved from the request query. If max_per_page is speci-
fied, per_page will be limited to that value. If there is no request or they aren’t in the query, they default to 1
and 20 respectively.

When error_out is True (default), the following rules will cause a 404 response:

• No items are found and page is not 1.

• page is less than 1, or per_page is negative.

• page or per_page are not ints.

When error_out is False, page and per_page default to 1 and 20 respectively.

Returns a CustomPagination object.

42 Chapter 1. Features

Quetzal Documentation, Release 0.6.0-dev

quetzal.app.helpers.sql module

class quetzal.app.helpers.sql.CreateTableAs(name, query)
Bases: sqlalchemy.sql.base.Executable, sqlalchemy.sql.elements.ClauseElement

class quetzal.app.helpers.sql.DropSchemaIfExists(name, cascade=False)
Bases: sqlalchemy.sql.base.Executable, sqlalchemy.sql.elements.ClauseElement

class quetzal.app.helpers.sql.GrantUsageOnSchema(schema, user)
Bases: sqlalchemy.sql.base.Executable, sqlalchemy.sql.elements.ClauseElement

quetzal.app.helpers.sql.print_sql(qs)

quetzal.app.middleware package

Submodules

quetzal.app.middleware.debug module

quetzal.app.middleware.debug.debug_request()

quetzal.app.middleware.debug.debug_response(response)

quetzal.app.middleware.gdpr module

quetzal.app.middleware.gdpr.gdpr_log_request()

quetzal.app.middleware.headers module

class quetzal.app.middleware.headers.HttpHostHeaderMiddleware(app,
server=None)

Bases: object

quetzal.app.redoc package

Submodules

quetzal.app.redoc.routes module

quetzal.app.redoc.routes.redoc()

1.13. Development 43

https://docs.python.org/3/library/functions.html#object

Quetzal Documentation, Release 0.6.0-dev

Submodules

quetzal.app.background module

Background tasks

quetzal.app.background.backup_logs(app)

quetzal.app.background.hello()

quetzal.app.hacks module

Hacks needed to circumvent connexion validation

There is a bug on the connexion library concerning content negotiation and response validation. See https://github.
com/zalando/connexion/issues/860

Until this issue is fixed, we need to find a way to avoid a false validation error when a requests sends an
‘application/octet-stream’ accept header when downloading files

class quetzal.app.hacks.CustomResponseValidator(operation, mimetype, validator=None)
Bases: connexion.decorators.response.ResponseValidator

validate_response_with_request(request, data, status_code, headers, url)

quetzal.app.models module

class quetzal.app.models.ApiKey(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Model

class quetzal.app.models.BaseMetadataKeys
Bases: enum.Enum

Set of metadata keys that exist in the base metadata family

The base metadata family is completely managed by Quetzal; a user cannot set or change its values (with the
exception of the value for the path or filename keys). This enumeration defines the set of keys that exist in this
family.

CHECKSUM = 'checksum'
MD5 checksum of the file

DATE = 'date'
Date when this file was created.

FILENAME = 'filename'
Filename, without its path component.

ID = 'id'
Unique file identifier.

PATH = 'path'
Path component of the filename.

SIZE = 'size'
Size in bytes of the file.

STATE = 'state'
State of the file; see FileState.

44 Chapter 1. Features

https://github.com/zalando/connexion/issues/860
https://github.com/zalando/connexion/issues/860
https://docs.python.org/3/library/enum.html#enum.Enum

Quetzal Documentation, Release 0.6.0-dev

URL = 'url'
URL where this file is stored.

class quetzal.app.models.Family(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Model

Quetzal metadata family

In quetzal, metadata are organized in semantic groups that have a name and a version number. This is the
definition of a metadata _family_. This class represents this definition. It is attached to a workspace, until the
workspace is committed: at this point the family will be disassociated from the workspace to become global
(available as public information).

id
Identifier and primary key of a family.

Type int

name
Name of the family.

Type str

version
Version of the family. Can be None during a workspace creation, and until its initialization, to express the
latest available version.

Type int

description
Human-readable description of the family and its contents, documentation, and any other useful comment.

Type str

fk_workspace_id
Reference to the workspace that uses this family. When None, it means that this family and all its associ-
ated metadata is public.

Type int

Extra attributes

metadata_set All Metadata entries associated to this family.

increment()
Create a new family with the same name but next version number

The new family will be associated to the same workspace.

class quetzal.app.models.FileState
Bases: enum.Enum

State of a Quetzal file

Quetzal files have a status, saved in their base metadata under the state key. It can only have the values defined
in this enumeration.

DELETED = 'deleted'
File has been deleted.

Deleted files will have their metadata cleared when the workspace is committed.

1.13. Development 45

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/enum.html#enum.Enum

Quetzal Documentation, Release 0.6.0-dev

If it was an already committed file, its contents will not be removed from the global data storage directory
or bucket, but its metadata will be cleared. If it was a file that was not committed yet, it will be erased from
its workspace data directory or bucket.

Deleted files are not considered in queries.

READY = 'ready'
File is ready

It has been uploaded, it can be downloaded, its metadata can be changed and when its workspace is
committed, it will be moved to the global data storage directory or bucket.

TEMPORARY = 'temporary'
File is ready but temporary

Like READY, but this file will not be considered when the workspace is committed. That is, it will not be
copied to the global data storage directory or bucket.

class quetzal.app.models.Metadata(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Model

Quetzal unstructured metadata

Quetzal defines metadata as a dictionary associated with a family. Families define the semantic organization and
versioning of metadata, while this class gathers all the metadata key and values in a dictionary, represented as a
JSON object.

id
Identifier and primary key of a metadata entry.

Type int

id_file
Unique identifier of a file as a UUID number version 4. This identifier is also present and must be the same
as the id entry in the json member.

Type uuid.UUID

json
A json representation of metadata. Keys are metadata names and values are the related values. It may be a
nested object if needed.

Type dict

Extra attributes

family The related Family associated to this metadata.

static get_latest(file_id, family)
Retrieve the latest metadata of a file under a particular family

static get_latest_global(file_id=None, family_name=None)
Retrieve the latest metadata of a file under a particular family

to_dict()
Return a dictionary representation of the metadata

Used to conform to the metadata details object on the OpenAPI specification.

Returns Dictionary representation of this object.

Return type dict

46 Chapter 1. Features

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Quetzal Documentation, Release 0.6.0-dev

update(json)
Update the underlying json metadata with the values of a new one

This function takes the current json saved in this metadata object and updates it (like dict.update)
with the new values found in the json input parameter. This does not remove any key; it adds new keys or
changes any existing one.

Since SQLAlchemy does not detect changes on a JSONB column unless a new object is assigned to it, this
function creates a new dictionary and replaces the previous one.

Changes still need to be committed through a DB session object.

Parameters json (dict) – A new metadata object that will update over the existing one

Returns

Return type self

class quetzal.app.models.MetadataQuery(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Model

Query for metadata on Quetzal

Queries on Quetzal are temporarily saved as objects. This was initially thought as a mechanism for easier and
faster paginations, to avoid verifying that a query is valid every time and possibly to compile these queries if
needed.

id
Identifier and primary key of a query.

Type int

dialect
Dialect used on this query.

Type QueryDialect

code
String representation of the query. May change in the future.

Type str

fk_workspace_id
Reference to the Workspace where this query is applied. If None, the query is applied on the global,
committed metadata.

Type int

fk_user_id
Reference to the User who created this query.

Type int

static get_or_404(qid)
Get a workspace by id or raise an APIException

static get_or_create(dialect, code, workspace, owner)
Retrieve a query by its fields or create a new one

to_dict(results=None)
Create a dict representation of the query and its results

Used to conform to the OpenAPI specification of the paginable query results

Parameters results (dict) – Results as a paginable object.

1.13. Development 47

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Quetzal Documentation, Release 0.6.0-dev

Returns Dictionary representation of this object.

Return type dict

class quetzal.app.models.QueryDialect
Bases: enum.Enum

Query dialects supported by Quetzal

class quetzal.app.models.Role(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Model

Authorization management role on Quetzal

Quetzal operations are protected by an authorization system based on roles. A user may have one to many roles;
a role defines what operations the associated users can do.

Note that the n to n relationship of roles and users is implemented through the roles_users_table.

id
Identifier and primary key of a role.

Type int

name
Unique name of the role.

Type str

description
Human-readable description of the role.

Type str

Extra attributes

users Set of users associated with this role. This attribute is defined through a backref in User.

class quetzal.app.models.User(**kwargs)
Bases: flask_login.mixins.UserMixin, sqlalchemy.ext.declarative.api.Model

Quetzal user

Almost all operations on Quetzal can only be done with an authenticated user. This model defines the internal
information that Quetzal needs for bookeeping its users, permissions, emails, etc.

id
Identifier and primary key of a user.

Type int

username
Unique string identifier of a user (e.g. admin, alice, bob).

Type str

email
Unique e-mail address of a user.

Type str

password_hash
Internal representation of the user password with salt.

Type str

48 Chapter 1. Features

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Quetzal Documentation, Release 0.6.0-dev

token
Unique, temporary authorization token.

Type str

token_expiration
Expiration date of autorization token.

Type datetime

active
Whether this user is active (and consequently can perform operations) or not.

Type bool

Extra attributes

roles Set of Roles associated with this user.

workspaces Set of Workspaces owned by this user.

queries Set of Queries created by this user.

check_password(password)
Check if a password is correct.

Parameters password (str) – The password to verify against the hash-salted stored pass-
word.

Returns True when the provided password matches the hash-salted stored one.

Return type bool

static check_token(token)
Retrieve a user by token

No user will be returned when the token is expired or does not exist.

Parameters token (str) – Authorization token.

Returns user – User with the provided token, or None when either the token was not found or
it was expired.

Return type User

get_token(expires_in=3600)
Create or retrieve an authorization token

When a user already has an authorization token, it returns it.

If there is no authorization token or the existing authorization token for this user is expired, this function
will create a new one as a random string.

The changes on this instance are not propagated to the database (this must be done by the caller), but this
instance added to the current database session.

Parameters expires_in (int) – Expiration time, in seconds from the current date, used
when creating a new token.

Returns The authorization token

Return type str

1.13. Development 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Quetzal Documentation, Release 0.6.0-dev

property is_active
Property accessor for active.

Needed to conform to the flask_login.UserMixin interface.

revoke_token()
Revoke the authorization token

The changes on this instance are not propagated to the database (this must be done by the caller), but this
instance added to the current database session.

set_password(password)
Change the password of this user.

This function set and store the new password as a salt-hashed string.

The changes on this instance are not propagated to the database (this must be done by the caller), but this
instance added to the current database session.

Parameters password (str) – The new password.

class quetzal.app.models.Workspace(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Model

Quetzal workspace

In Quetzal, all operations on files and metadata are sandboxed in workspaces. Workspaces define the exact
metadata families and versions, which in turn provides a snapshot of what files and metadata are available. This
is the base of the reproducibility of dataset in Quetzal and the traceability of the data changes.

Workspaces also provide a storage directory or bucket where the user can upload new and temporary data files.

id
Identifier and primary key of a workspace.

Type int

name
Short name for a workspace. Unique together with the owner’s username.

Type str

_state
State of the workspace. Do not use directly, use its property accessors.

Type WorkspaceState

description
Human-readable description of the workspace, its purpose, and any other useful comment.

Type str

creation_date
Date when the workspace was created.

Type datetime

temporary
When True, Quetzal will know that this workspace is intended for temporary operations and may be
deleted automatically when not used for a while. When False, only its owner may delete it.

Type bool

data_url
URL to the data directory or bucket where new files associated to this workspace will be saved.

50 Chapter 1. Features

https://flask-login.readthedocs.io/en/latest/index.html#flask_login.UserMixin
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Quetzal Documentation, Release 0.6.0-dev

Type str

pg_schema_name
Used when creating structured views of the structured metadata, this schema name is the postgresql schema
where temporary tables exists with a copy of the unstructured metadata.

Type str

fk_user_id
Owner of this workspace as a foreign key to a User.

Type int

fk_last_metadata_id
Reference to the most recent Metadata object that has been committed at the time when this workspace
was created. This permits to have a reference to which global metadata entries should be taken into account
when determining the metadata in this workspace.

Type int

Extra attributes

families Set of Families (including its version) used for this workspace.

queries Set of Queries created on this workspace.

property can_change_metadata
Returns True when metadata can be changed on the current workspace state

get_base_family()
Get the base family instance associated with this workspace

get_current_metadata()
Get the metadata that has been added or modified in this workspace

In contrast to get_previous_metadata(), this function only retrieves the metadata that has been
changed on this workspace after its creation.

get_metadata()
Get a union of the previous and new metadata of this workspace

This function uses a combination of the results of get_previous_metadata() and
get_current_metadata() to obtain the merged version of both. This represents the defini-
tive metadata of each file, regardless of changes before or after the creation of this workspace.

static get_or_404(wid)
Get a workspace by id or raise a quetzal.app.api.exceptions.
ObjectNotFoundException

get_previous_metadata()
Get the global metadata of this workspace

The global metadata is the metadata that already has been committed, but it must also have a version value
that is under the values declared for this workspace.

make_schema_name()
Generate a unique schema name for its internal structured metadata views

property state
Property accessor for the workspace state

1.13. Development 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Quetzal Documentation, Release 0.6.0-dev

to_dict()
Return a dictionary representation of the workspace

This is used in particular to adhere to the OpenAPI specification of workspace details objects.

Returns Dictionary representation of this object.

Return type dict

class quetzal.app.models.WorkspaceState
Bases: enum.Enum

Status of a workspace.

Workspaces in Quetzal have a state that defines what operations can be performed on them. This addresses the
need for long-running tasks that modify the workspace, such as initialization, committing, deleting, etc.

The transitions from one state to another is defined on this enumeration on the transitions() function. The
following diagram illustrates the possible state transitions:

The verification of state transitions is implemented in the quetzal.app.models.Workspace.state
property setter function.

COMMITTING = 'committing'
The workspace is committing its files and metadata.

The workpace will remain on this state until the committing routine finishes. No operation is possible until
then.

CONFLICT = 'conflict'
The workspace detected a conflict during its commit routine.

The workpace will remain on this state until the administrator fixes this situation. No operation is possible.

DELETED = 'deleted'
The workspace has been deleted.

The instance of the workspace remains in database for bookeeping, but there is no operation possible with
it at this point.

DELETING = 'deleting'
The workspace is deleting its files and itself.

The workpace will remain on this state until the deleting routine finishes. No operation is possible.

INITIALIZING = 'initializing'
The workspace has just been created.

The workspace will remain on this state until the initialization routine finishes. No operation is possible
until then.

INVALID = 'invalid'
The workspace has encountered an unexpected error.

The workpace will remain on this state until the administrator fixes this situation. No operation is possible.

READY = 'ready'
The workspace is ready.

The workspace can now be scanned, updated, committed or deleted. Files can be uploaded to it and their
metadata can be changed.

SCANNING = 'scanning'
The workspace is updating its internal views.

52 Chapter 1. Features

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/enum.html#enum.Enum

Quetzal Documentation, Release 0.6.0-dev

The workpace will remain on this state until the scanning routine finishes. No operation is possible until
then.

UPDATING = 'updating'
The workspace is updating its metadata version definition.

The workpace will remain on this state until the updating routine finishes. No operation is possible until
then.

quetzal.app.models.roles_users_table = Table('roles_users', MetaData(bind=None), Column('fk_user_id', Integer(), ForeignKey('user.id'), table=<roles_users>), Column('fk_role_id', Integer(), ForeignKey('role.id'), table=<roles_users>), schema=None)
Auxiliary table associating users and roles

quetzal.app.routes module

quetzal.app.routes.favicon()

quetzal.app.routes.health()

quetzal.app.routes.index()

quetzal.app.security module

class quetzal.app.security.CommitWorkspacePermission(workspace_id)
Bases: flask_principal.Permission

class quetzal.app.security.ReadWorkspacePermission(workspace_id)
Bases: flask_principal.Permission

quetzal.app.security.WorkspaceNeed
alias of quetzal.app.security.workspace_need

class quetzal.app.security.WriteWorkspacePermission(workspace_id)
Bases: flask_principal.Permission

quetzal.app.security.load_identity(sender, identity)

1.13. Development 53

Quetzal Documentation, Release 0.6.0-dev

54 Chapter 1. Features

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

55

Quetzal Documentation, Release 0.6.0-dev

56 Chapter 2. Indices and tables

PYTHON MODULE INDEX

q
quetzal, 31
quetzal.app, 31
quetzal.app.api, 32
quetzal.app.api.auth, 36
quetzal.app.api.data, 32
quetzal.app.api.data.file, 34
quetzal.app.api.data.query, 35
quetzal.app.api.data.storage, 32
quetzal.app.api.data.storage.gcp, 33
quetzal.app.api.data.storage.local, 33
quetzal.app.api.data.tasks, 35
quetzal.app.api.data.workspace, 35
quetzal.app.api.exceptions, 36
quetzal.app.api.router, 37
quetzal.app.background, 44
quetzal.app.cli, 40
quetzal.app.cli.data, 40
quetzal.app.cli.deployment, 40
quetzal.app.cli.users, 40
quetzal.app.cli.utils, 40
quetzal.app.hacks, 44
quetzal.app.helpers, 40
quetzal.app.helpers.celery, 40
quetzal.app.helpers.files, 41
quetzal.app.helpers.google_api, 41
quetzal.app.helpers.pagination, 42
quetzal.app.helpers.sql, 43
quetzal.app.middleware, 43
quetzal.app.middleware.debug, 43
quetzal.app.middleware.gdpr, 43
quetzal.app.middleware.headers, 43
quetzal.app.redoc, 43
quetzal.app.redoc.routes, 43
quetzal.app.routes, 53
quetzal.app.security, 53

57

Quetzal Documentation, Release 0.6.0-dev

58 Python Module Index

INDEX

Symbols
_all_metadata() (in module quet-

zal.app.api.data.file), 34
_mockable_call() (in module quet-

zal.app.helpers.celery), 41
_now() (in module quetzal.app.api.data.file), 34
_state (quetzal.app.models.Workspace attribute), 29,

50
_verify_filename_path() (in module quet-

zal.app.api.data.file), 34

A
active (quetzal.app.models.User attribute), 27, 49
APIException, 36
auth (in module quetzal.app.api.router), 40
AuthRouter (class in quetzal.app.api.router), 37

B
backup_logs() (in module quetzal.app.background),

44

C
Celery (class in quetzal.app.helpers.celery), 40
check_apikey() (in module quetzal.app.api.auth),

36
check_basic() (in module quetzal.app.api.auth), 36
check_bearer() (in module quetzal.app.api.auth),

36
code (quetzal.app.models.MetadataQuery attribute), 26,

47
commit() (in module quetzal.app.api.data.workspace),

35
commit() (quetzal.app.api.router.WorkspaceRouter

method), 39
CommitWorkspacePermission (class in quet-

zal.app.security), 53
Conflict, 36
create() (in module quetzal.app.api.data.file), 34
create() (in module quetzal.app.api.data.query), 35
create() (in module quetzal.app.api.data.workspace),

35

create() (quetzal.app.api.router.WorkspaceFilesRouter
method), 38

create() (quetzal.app.api.router.WorkspaceQueryRouter
method), 39

create() (quetzal.app.api.router.WorkspaceRouter
method), 39

create_app() (in module quetzal.app), 31
create_w() (in module quetzal.app.api.data.query),

35
CreateTableAs (class in quetzal.app.helpers.sql), 43
creation_date (quetzal.app.models.Workspace at-

tribute), 29, 50
CustomPagination (class in quet-

zal.app.helpers.pagination), 42
CustomResponseValidator (class in quet-

zal.app.hacks), 44

D
data_url (quetzal.app.models.Workspace attribute),

29, 50
debug_request() (in module quet-

zal.app.middleware.debug), 43
debug_response() (in module quet-

zal.app.middleware.debug), 43
delete() (in module quetzal.app.api.data.file), 34
delete() (in module quetzal.app.api.data.workspace),

35
delete() (quetzal.app.api.router.WorkspaceFilesRouter

method), 38
delete() (quetzal.app.api.router.WorkspaceRouter

method), 39
description (quetzal.app.models.Family attribute),

24, 45
description (quetzal.app.models.Role attribute), 27,

48
description (quetzal.app.models.Workspace at-

tribute), 29, 50
details() (in module quetzal.app.api.data.file), 34
details() (in module quetzal.app.api.data.query), 35
details() (in module quet-

zal.app.api.data.workspace), 35
details() (quetzal.app.api.router.WorkspaceFilesRouter

59

Quetzal Documentation, Release 0.6.0-dev

method), 38
details() (quetzal.app.api.router.WorkspaceQueryRouter

method), 39
details() (quetzal.app.api.router.WorkspaceRouter

method), 39
details_w() (in module quetzal.app.api.data.file), 34
details_w() (in module quetzal.app.api.data.query),

35
dialect (quetzal.app.models.MetadataQuery at-

tribute), 26, 47
DropSchemaIfExists (class in quet-

zal.app.helpers.sql), 43

E
email (quetzal.app.models.User attribute), 27, 48
EmptyCommit, 36

F
favicon() (in module quetzal.app.routes), 53
fetch() (in module quetzal.app.api.data.file), 34
fetch() (in module quetzal.app.api.data.query), 35
fetch() (in module quetzal.app.api.data.workspace),

35
fetch() (quetzal.app.api.router.WorkspaceFilesRouter

method), 38
fetch() (quetzal.app.api.router.WorkspaceQueryRouter

method), 39
fetch() (quetzal.app.api.router.WorkspaceRouter

method), 39
fetch_w() (in module quetzal.app.api.data.file), 34
fetch_w() (in module quetzal.app.api.data.query), 35
file_details() (quet-

zal.app.api.router.PublicRouter method),
37

file_fetch() (quetzal.app.api.router.PublicRouter
method), 37

fk_last_metadata_id (quet-
zal.app.models.Workspace attribute), 29,
51

fk_user_id (quetzal.app.models.MetadataQuery at-
tribute), 26, 47

fk_user_id (quetzal.app.models.Workspace at-
tribute), 29, 51

fk_workspace_id (quetzal.app.models.Family
attribute), 24, 45

fk_workspace_id (quet-
zal.app.models.MetadataQuery attribute),
26, 47

G
gdpr_log_request() (in module quet-

zal.app.middleware.gdpr), 43
get_bucket() (in module quet-

zal.app.helpers.google_api), 41

get_client() (in module quet-
zal.app.helpers.google_api), 41

get_data_bucket() (in module quet-
zal.app.helpers.google_api), 41

get_object() (in module quet-
zal.app.helpers.google_api), 41

get_readable_info() (in module quet-
zal.app.helpers.files), 41

get_token() (in module quetzal.app.api.auth), 36
get_token() (quetzal.app.api.router.AuthRouter

method), 37
GrantUsageOnSchema (class in quet-

zal.app.helpers.sql), 43

H
health() (in module quetzal.app.routes), 53
hello() (in module quetzal.app.background), 44
HttpHostHeaderMiddleware (class in quet-

zal.app.middleware.headers), 43

I
id (quetzal.app.models.Family attribute), 24, 45
id (quetzal.app.models.Metadata attribute), 25, 46
id (quetzal.app.models.MetadataQuery attribute), 26, 47
id (quetzal.app.models.Role attribute), 26, 48
id (quetzal.app.models.User attribute), 27, 48
id (quetzal.app.models.Workspace attribute), 29, 50
id_file (quetzal.app.models.Metadata attribute), 25,

46
index() (in module quetzal.app.routes), 53
init_app() (quetzal.app.helpers.celery.Celery

method), 41
InvalidTransitionException, 36

J
json (quetzal.app.models.Metadata attribute), 25, 46

L
load_identity() (in module quetzal.app.security),

53
log_task() (in module quetzal.app.helpers.celery), 41
logout() (in module quetzal.app.api.auth), 36
logout() (quetzal.app.api.router.AuthRouter method),

37

M
merge() (in module quetzal.app.api.data.tasks), 35

N
name (quetzal.app.models.Family attribute), 24, 45
name (quetzal.app.models.Role attribute), 27, 48
name (quetzal.app.models.Workspace attribute), 29, 50
next() (quetzal.app.helpers.pagination.CustomPagination

method), 42

60 Index

Quetzal Documentation, Release 0.6.0-dev

O
ObjectNotFoundException, 36

P
paginate() (in module quet-

zal.app.helpers.pagination), 42
password_hash (quetzal.app.models.User attribute),

27, 48
pg_schema_name (quetzal.app.models.Workspace at-

tribute), 29, 51
prev() (quetzal.app.helpers.pagination.CustomPagination

method), 42
print_sql() (in module quetzal.app.helpers.sql), 43
public (in module quetzal.app.api.router), 40
PublicRouter (class in quetzal.app.api.router), 37

Q
query_create() (quet-

zal.app.api.router.PublicRouter method),
37

query_details() (quet-
zal.app.api.router.PublicRouter method),
38

query_fetch() (quetzal.app.api.router.PublicRouter
method), 38

quetzal (module), 31
quetzal.app (module), 31
quetzal.app.api (module), 32
quetzal.app.api.auth (module), 36
quetzal.app.api.data (module), 32
quetzal.app.api.data.file (module), 34
quetzal.app.api.data.query (module), 35
quetzal.app.api.data.storage (module), 32
quetzal.app.api.data.storage.gcp (mod-

ule), 33
quetzal.app.api.data.storage.local (mod-

ule), 33
quetzal.app.api.data.tasks (module), 35
quetzal.app.api.data.workspace (module),

35
quetzal.app.api.exceptions (module), 36
quetzal.app.api.router (module), 37
quetzal.app.background (module), 44
quetzal.app.cli (module), 40
quetzal.app.cli.data (module), 40
quetzal.app.cli.deployment (module), 40
quetzal.app.cli.users (module), 40
quetzal.app.cli.utils (module), 40
quetzal.app.hacks (module), 44
quetzal.app.helpers (module), 40
quetzal.app.helpers.celery (module), 40
quetzal.app.helpers.files (module), 41
quetzal.app.helpers.google_api (module),

41

quetzal.app.helpers.pagination (module),
42

quetzal.app.helpers.sql (module), 43
quetzal.app.middleware (module), 43
quetzal.app.middleware.debug (module), 43
quetzal.app.middleware.gdpr (module), 43
quetzal.app.middleware.headers (module),

43
quetzal.app.redoc (module), 43
quetzal.app.redoc.routes (module), 43
quetzal.app.routes (module), 53
quetzal.app.security (module), 53
QuetzalException, 37

R
ReadWorkspacePermission (class in quet-

zal.app.security), 53
redoc() (in module quetzal.app.redoc.routes), 43
response_object() (quet-

zal.app.helpers.pagination.CustomPagination
method), 42

S
scan() (in module quetzal.app.api.data.workspace), 36
scan() (quetzal.app.api.router.WorkspaceRouter

method), 40
set_metadata() (in module quet-

zal.app.api.data.file), 34
set_metadata() (quet-

zal.app.api.router.WorkspaceFilesRouter
method), 38

set_permissions() (in module quet-
zal.app.api.data.storage), 32

set_permissions() (in module quet-
zal.app.api.data.storage.gcp), 33

set_permissions() (in module quet-
zal.app.api.data.storage.local), 33

split_check_path() (in module quet-
zal.app.helpers.files), 41

T
temporary (quetzal.app.models.Workspace attribute),

29, 50
token (quetzal.app.models.User attribute), 27, 48
token_expiration (quetzal.app.models.User

attribute), 27, 49

U
update_metadata() (in module quet-

zal.app.api.data.file), 34
update_metadata() (quet-

zal.app.api.router.WorkspaceFilesRouter
method), 38

upload() (in module quetzal.app.api.data.storage), 32

Index 61

Quetzal Documentation, Release 0.6.0-dev

upload() (in module quet-
zal.app.api.data.storage.gcp), 33

upload() (in module quet-
zal.app.api.data.storage.local), 33

username (quetzal.app.models.User attribute), 27, 48

V
validate_response_with_request() (quet-

zal.app.hacks.CustomResponseValidator
method), 44

version (quetzal.app.models.Family attribute), 24, 45

W
WorkerException, 37
workspace (in module quetzal.app.api.router), 40
workspace_file (in module quetzal.app.api.router),

40
workspace_query (in module quet-

zal.app.api.router), 40
WorkspaceFilesRouter (class in quet-

zal.app.api.router), 38
WorkspaceNeed (in module quetzal.app.security), 53
WorkspaceQueryRouter (class in quet-

zal.app.api.router), 38
WorkspaceRouter (class in quetzal.app.api.router),

39
WriteWorkspacePermission (class in quet-

zal.app.security), 53

62 Index

	Features
	Introduction
	Design
	License
	Quickstart
	Use cases
	Quickstart
	Cloud storage
	Structure
	Code organization
	Development use cases
	Testing
	Deployment
	Development

	Indices and tables
	Python Module Index
	Index

